Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.474
Filtrar
1.
Nature ; 628(8009): 826-834, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38538787

RESUMO

Empirical evidence suggests that heat exposure reduces food intake. However, the neurocircuit architecture and the signalling mechanisms that form an associative interface between sensory and metabolic modalities remain unknown, despite primary thermoceptive neurons in the pontine parabrachial nucleus becoming well characterized1. Tanycytes are a specialized cell type along the wall of the third ventricle2 that bidirectionally transport hormones and signalling molecules between the brain's parenchyma and ventricular system3-8. Here we show that tanycytes are activated upon acute thermal challenge and are necessary to reduce food intake afterwards. Virus-mediated gene manipulation and circuit mapping showed that thermosensing glutamatergic neurons of the parabrachial nucleus innervate tanycytes either directly or through second-order hypothalamic neurons. Heat-dependent Fos expression in tanycytes suggested their ability to produce signalling molecules, including vascular endothelial growth factor A (VEGFA). Instead of discharging VEGFA into the cerebrospinal fluid for a systemic effect, VEGFA was released along the parenchymal processes of tanycytes in the arcuate nucleus. VEGFA then increased the spike threshold of Flt1-expressing dopamine and agouti-related peptide (Agrp)-containing neurons, thus priming net anorexigenic output. Indeed, both acute heat and the chemogenetic activation of glutamatergic parabrachial neurons at thermoneutrality reduced food intake for hours, in a manner that is sensitive to both Vegfa loss-of-function and blockage of vesicle-associated membrane protein 2 (VAMP2)-dependent exocytosis from tanycytes. Overall, we define a multimodal neurocircuit in which tanycytes link parabrachial sensory relay to the long-term enforcement of a metabolic code.


Assuntos
Ingestão de Alimentos , Células Ependimogliais , Temperatura Alta , Hipotálamo , Neurônios , Núcleos Parabraquiais , Fator A de Crescimento do Endotélio Vascular , Animais , Hipotálamo/metabolismo , Hipotálamo/citologia , Camundongos , Masculino , Neurônios/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Núcleos Parabraquiais/citologia , Núcleos Parabraquiais/metabolismo , Núcleos Parabraquiais/fisiologia , Células Ependimogliais/metabolismo , Células Ependimogliais/citologia , Dopamina/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Tronco Encefálico/fisiologia , Proteína Relacionada com Agouti/metabolismo , Feminino , Sensação Térmica/fisiologia , Vias Neurais/metabolismo , Núcleo Arqueado do Hipotálamo/metabolismo , Núcleo Arqueado do Hipotálamo/citologia , Comportamento Alimentar/fisiologia
2.
Nature ; 624(7990): 130-137, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37993711

RESUMO

The termination of a meal is controlled by dedicated neural circuits in the caudal brainstem. A key challenge is to understand how these circuits transform the sensory signals generated during feeding into dynamic control of behaviour. The caudal nucleus of the solitary tract (cNTS) is the first site in the brain where many meal-related signals are sensed and integrated1-4, but how the cNTS processes ingestive feedback during behaviour is unknown. Here we describe how prolactin-releasing hormone (PRLH) and GCG neurons, two principal cNTS cell types that promote non-aversive satiety, are regulated during ingestion. PRLH neurons showed sustained activation by visceral feedback when nutrients were infused into the stomach, but these sustained responses were substantially reduced during oral consumption. Instead, PRLH neurons shifted to a phasic activity pattern that was time-locked to ingestion and linked to the taste of food. Optogenetic manipulations revealed that PRLH neurons control the duration of seconds-timescale feeding bursts, revealing a mechanism by which orosensory signals feed back to restrain the pace of ingestion. By contrast, GCG neurons were activated by mechanical feedback from the gut, tracked the amount of food consumed and promoted satiety that lasted for tens of minutes. These findings reveal that sequential negative feedback signals from the mouth and gut engage distinct circuits in the caudal brainstem, which in turn control elements of feeding behaviour operating on short and long timescales.


Assuntos
Regulação do Apetite , Tronco Encefálico , Ingestão de Alimentos , Retroalimentação Fisiológica , Alimentos , Saciação , Estômago , Regulação do Apetite/fisiologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Ingestão de Alimentos/fisiologia , Vias Neurais/citologia , Vias Neurais/fisiologia , Neurônios/metabolismo , Hormônio Liberador de Prolactina/metabolismo , Saciação/fisiologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Estômago/fisiologia , Paladar/fisiologia , Fatores de Tempo , Animais , Camundongos
3.
J Physiol ; 601(4): 801-829, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36696965

RESUMO

Prolonged high-fat diet (HFD) exposure is associated with hyperphagia, excess caloric intake and weight gain. After initial exposure to a HFD, a brief (24-48 h) period of hyperphagia is followed by the regulation of caloric intake and restoration of energy balance within an acute (3-5 day) period. Previous studies have demonstrated this occurs via a vagally mediated signalling cascade that increases glutamatergic transmission via activation of NMDA receptors located on gastric-projecting neurons of the dorsal motor nucleus of the vagus (DMV). The present study used electrophysiological recordings from thin brainstem slice preparations, in vivo recordings of gastric motility and tone, measurement of gastric emptying rates, and food intake studies to investigate the hypothesis that activation of brainstem astrocytes in response to acute HFD exposure is responsible for the increased glutamatergic drive to DMV neurons and the restoration of caloric balance. Pharmacological and chemogenetic inhibition of brainstem astrocytes reduced glutamatergic signalling and DMV excitability, dysregulated gastric tone and motility, attenuated the homeostatic delay in gastric emptying, and prevented the decrease in food intake that is observed during the period of energy regulation following initial exposure to HFD. Understanding the mechanisms involved in caloric regulation may provide critical insights into energy balance as well as into the hyperphagia that develops as these mechanisms are overcome. KEY POINTS: Initial exposure to a high fat diet is associated with a brief period of hyperphagia before caloric intake and energy balance is restored. This period of homeostatic regulation is associated with a vagally mediated signalling cascade that increases glutamatergic transmission to dorsal motor nucleus of the vagus (DMV) neurons via activation of synaptic NMDA receptors. The present study demonstrates that pharmacological and chemogenetic inhibition of brainstem astrocytes reduced glutamatergic signalling and DMV neuronal excitability, dysregulated gastric motility and tone and emptying, and prevented the regulation of food intake following high-fat diet exposure. Astrocyte regulation of glutamatergic transmission to DMV neurons appears to involve release of the gliotransmitters glutamate and ATP. Understanding the mechanisms involved in caloric regulation may provide critical insights into energy balance as well as into the hyperphagia that develops as these mechanisms are overcome.


Assuntos
Astrócitos , Ingestão de Energia , Hiperfagia , Animais , Ratos , Astrócitos/fisiologia , Tronco Encefálico/citologia , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato , Nervo Vago/fisiologia , Dieta Hiperlipídica
4.
Nature ; 609(7928): 761-771, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36071158

RESUMO

Infections induce a set of pleiotropic responses in animals, including anorexia, adipsia, lethargy and changes in temperature, collectively termed sickness behaviours1. Although these responses have been shown to be adaptive, the underlying neural mechanisms have not been elucidated2-4. Here we use of a set of unbiased methodologies to show that a specific subpopulation of neurons in the brainstem can control the diverse responses to a bacterial endotoxin (lipopolysaccharide (LPS)) that potently induces sickness behaviour. Whole-brain activity mapping revealed that subsets of neurons in the nucleus of the solitary tract (NTS) and the area postrema (AP) acutely express FOS after LPS treatment, and we found that subsequent reactivation of these specific neurons in FOS2A-iCreERT2 (also known as TRAP2) mice replicates the behavioural and thermal component of sickness. In addition, inhibition of LPS-activated neurons diminished all of the behavioural responses to LPS. Single-nucleus RNA sequencing of the NTS-AP was used to identify LPS-activated neural populations, and we found that activation of ADCYAP1+ neurons in the NTS-AP fully recapitulates the responses elicited by LPS. Furthermore, inhibition of these neurons significantly diminished the anorexia, adipsia and locomotor cessation seen after LPS injection. Together these studies map the pleiotropic effects of LPS to a neural population that is both necessary and sufficient for canonical elements of the sickness response, thus establishing a critical link between the brain and the response to infection.


Assuntos
Tronco Encefálico , Comportamento de Doença , Neurônios , Animais , Anorexia/complicações , Área Postrema/citologia , Área Postrema/metabolismo , Tronco Encefálico/citologia , Tronco Encefálico/efeitos dos fármacos , Tronco Encefálico/fisiologia , Comportamento de Doença/efeitos dos fármacos , Letargia/complicações , Lipopolissacarídeos/farmacologia , Camundongos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Proteínas Proto-Oncogênicas c-fos/metabolismo , Núcleo Solitário/citologia , Núcleo Solitário/metabolismo
5.
Nature ; 609(7927): 560-568, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045290

RESUMO

Central oscillators are primordial neural circuits that generate and control rhythmic movements1,2. Mechanistic understanding of these circuits requires genetic identification of the oscillator neurons and their synaptic connections to enable targeted electrophysiological recording and causal manipulation during behaviours. However, such targeting remains a challenge with mammalian systems. Here we delimit the oscillator circuit that drives rhythmic whisking-a motor action that is central to foraging and active sensing in rodents3,4. We found that the whisking oscillator consists of parvalbumin-expressing inhibitory neurons located in the vibrissa intermediate reticular nucleus (vIRtPV) in the brainstem. vIRtPV neurons receive descending excitatory inputs and form recurrent inhibitory connections among themselves. Silencing vIRtPV neurons eliminated rhythmic whisking and resulted in sustained vibrissae protraction. In vivo recording of opto-tagged vIRtPV neurons in awake mice showed that these cells spike tonically when animals are at rest, and transition to rhythmic bursting at the onset of whisking, suggesting that rhythm generation is probably the result of network dynamics, as opposed to intrinsic cellular properties. Notably, ablating inhibitory synaptic inputs to vIRtPV neurons quenched their rhythmic bursting, impaired the tonic-to-bursting transition and abolished regular whisking. Thus, the whisking oscillator is an all-inhibitory network and recurrent synaptic inhibition has a key role in its rhythmogenesis.


Assuntos
Movimento , Vias Neurais , Neurônios , Periodicidade , Vibrissas , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Camundongos , Movimento/fisiologia , Inibição Neural , Neurônios/fisiologia , Parvalbuminas/metabolismo , Descanso , Sinapses , Vibrissas/fisiologia , Vigília
6.
Nature ; 609(7926): 320-326, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36045291

RESUMO

The nervous system uses various coding strategies to process sensory inputs. For example, the olfactory system uses large receptor repertoires and is wired to recognize diverse odours, whereas the visual system provides high acuity of object position, form and movement1-5. Compared to external sensory systems, principles that underlie sensory processing by the interoceptive nervous system remain poorly defined. Here we developed a two-photon calcium imaging preparation to understand internal organ representations in the nucleus of the solitary tract (NTS), a sensory gateway in the brainstem that receives vagal and other inputs from the body. Focusing on gut and upper airway stimuli, we observed that individual NTS neurons are tuned to detect signals from particular organs and are topographically organized on the basis of body position. Moreover, some mechanosensory and chemosensory inputs from the same organ converge centrally. Sensory inputs engage specific NTS domains with defined locations, each containing heterogeneous cell types. Spatial representations of different organs are further sharpened in the NTS beyond what is achieved by vagal axon sorting alone, as blockade of brainstem inhibition broadens neural tuning and disorganizes visceral representations. These findings reveal basic organizational features used by the brain to process interoceptive inputs.


Assuntos
Tronco Encefálico , Sensação , Tronco Encefálico/anatomia & histologia , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Cálcio/metabolismo , Postura/fisiologia , Sensação/fisiologia , Células Receptoras Sensoriais/fisiologia , Núcleo Solitário/anatomia & histologia , Núcleo Solitário/citologia , Núcleo Solitário/fisiologia , Nervo Vago/fisiologia
7.
Nat Commun ; 12(1): 5809, 2021 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-34608167

RESUMO

SARS-CoV-2 has caused a global pandemic of COVID-19 since its emergence in December 2019. The infection causes a severe acute respiratory syndrome and may also spread to central nervous system leading to neurological sequelae. We have developed and characterized two new organotypic cultures from hamster brainstem and lung tissues that offer a unique opportunity to study the early steps of viral infection and screening antivirals. These models are not dedicated to investigate how the virus reaches the brain. However, they allow validating the early tropism of the virus in the lungs and demonstrating that SARS-CoV-2 could infect the brainstem and the cerebellum, mainly by targeting granular neurons. Viral infection induces specific interferon and innate immune responses with patterns specific to each organ, along with cell death by apoptosis, necroptosis, and pyroptosis. Overall, our data illustrate the potential of rapid modeling of complex tissue-level interactions during infection by a newly emerged virus.


Assuntos
Tronco Encefálico/virologia , Pulmão/virologia , Modelos Biológicos , SARS-CoV-2/patogenicidade , Monofosfato de Adenosina/análogos & derivados , Monofosfato de Adenosina/farmacologia , Alanina/análogos & derivados , Alanina/farmacologia , Células Epiteliais Alveolares/virologia , Animais , Antivirais/farmacologia , Tronco Encefálico/citologia , Tronco Encefálico/imunologia , Tronco Encefálico/patologia , Cricetinae , Imunidade Inata , Inflamação , Pulmão/citologia , Pulmão/imunologia , Pulmão/patologia , Neurônios/virologia , Técnicas de Cultura de Órgãos , Morte Celular Regulada , SARS-CoV-2/efeitos dos fármacos , Tropismo Viral
8.
Science ; 374(6565): 316-323, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34648327

RESUMO

Although dexterity relies on the constant transmission of sensory information, unchecked feedback can be disruptive. Yet how somatosensory feedback from the hands is regulated and whether this modulation influences movement remain unclear. We found that mouse tactile afferents recruit neurons in the brainstem cuneate nucleus, whose activity is modulated by distinct classes of local inhibitory neurons. Manipulation of these inhibitory circuits suppresses or enhances the transmission of tactile information, which affects manual behaviors. Top-down cortical pathways innervate cuneate in a complementary pattern, with somatosensory cortical neurons targeting the core tactile region of cuneate and a large rostral cortical population driving feed-forward inhibition of tactile transmission through an inhibitory shell. These findings identify a circuit basis for tactile feedback modulation that enables the effective execution of dexterous movement.


Assuntos
Retroalimentação Sensorial , Destreza Motora/fisiologia , Tato/fisiologia , Animais , Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Feminino , Masculino , Camundongos , Camundongos Mutantes , Movimento , Inibição Neural , Optogenética , Córtex Somatossensorial/fisiologia , Proteínas Vesiculares de Transporte de Aminoácidos Inibidores/genética
9.
J Chem Neuroanat ; 116: 101989, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126223

RESUMO

In a recent paper, we described the distribution of Nitric oxide (NO) in the diencephalon of the rock cavy (Kerodon rupestris). This present paper follows this work, showing the distribution of NO synthesizing neurons in the rock cavy's brainstem. For this, we used immunohistochemistry against the neuronal form of nitric oxide synthase (NOS) and NADPH diaphorase histochemistry. In contrast to the diencephalon in the rock cavy, where the NOS neurons were seen to be limited to some nuclei in the thalamus and hypothalamus, the distribution of NOS in the brainstem is widespread. Neurons immunoreactive to NOS (NOS-ir) were seen as rostral as the precommissural nuclei and as caudal as the caudal and gelatinous parts of the spinal trigeminal nucleus. Places such as the raphe nuclei, trigeminal complex, superior and inferior colliculus, oculomotor complex, periaqueductal grey matter, solitary tract nucleus, laterodorsal tegmental nucleus, pedunculopontine tegmental, and other nuclei of the reticular formation are among the locations with the most NOS-ir neurons. This distribution is similar, but with some differences, to those described for other rodents, indicating that NO also has an important role in rock cavy's physiology.


Assuntos
Tronco Encefálico/metabolismo , Neurônios Nitrérgicos/metabolismo , Óxido Nítrico Sintase/metabolismo , Óxido Nítrico/metabolismo , Animais , Tronco Encefálico/química , Tronco Encefálico/citologia , Feminino , Cobaias , Masculino , Neurônios Nitrérgicos/química , Óxido Nítrico/análise , Óxido Nítrico Sintase/análise , Especificidade da Espécie
10.
Nat Commun ; 12(1): 2380, 2021 04 22.
Artigo em Inglês | MEDLINE | ID: mdl-33888718

RESUMO

Diverse signaling complexes are precisely assembled at the presynaptic active zone for dynamic modulation of synaptic transmission and synaptic plasticity. Presynaptic GABAB-receptors nucleate critical signaling complexes regulating neurotransmitter release at most synapses. However, the molecular mechanisms underlying assembly of GABAB-receptor signaling complexes remain unclear. Here we show that neurexins are required for the localization and function of presynaptic GABAB-receptor signaling complexes. At four model synapses, excitatory calyx of Held synapses in the brainstem, excitatory and inhibitory synapses on hippocampal CA1-region pyramidal neurons, and inhibitory basket cell synapses in the cerebellum, deletion of neurexins rendered neurotransmitter release significantly less sensitive to GABAB-receptor activation. Moreover, deletion of neurexins caused a loss of GABAB-receptors from the presynaptic active zone of the calyx synapse. These findings extend the role of neurexins at the presynaptic active zone to enabling GABAB-receptor signaling, supporting the notion that neurexins function as central organizers of active zone signaling complexes.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Moléculas de Adesão de Célula Nervosa/metabolismo , Receptores de GABA-B/metabolismo , Sinapses/metabolismo , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Região CA1 Hipocampal/citologia , Região CA1 Hipocampal/fisiologia , Região CA3 Hipocampal/citologia , Região CA3 Hipocampal/metabolismo , Proteínas de Ligação ao Cálcio/genética , Cerebelo/citologia , Cerebelo/metabolismo , Camundongos , Camundongos Knockout , Modelos Animais , Proteínas do Tecido Nervoso/genética , Moléculas de Adesão de Célula Nervosa/genética , Plasticidade Neuronal/fisiologia , Técnicas de Patch-Clamp , Células Piramidais/metabolismo , Técnicas Estereotáxicas , Transmissão Sináptica/fisiologia , Ácido gama-Aminobutírico/metabolismo
11.
Pflugers Arch ; 473(6): 859-872, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33855632

RESUMO

The pontine A5 noradrenergic group contributes to the maturation of the respiratory system before birth in rats. These neurons are connected to the neural network responsible for respiratory rhythmogenesis. In the present study, we investigated the participation of A5 noradrenergic neurons in neonates (P7-8 and P14-15) in the control of ventilation during hypoxia and hypercapnia in in vivo experiments using conjugated saporin anti-dopamine beta-hydroxylase (DßH-SAP) to specifically ablate noradrenergic neurons. Thus, DßH-SAP (420 ng/µL) or saporin (SAP, control) was injected into the A5 region of neonatal male Wistar rats. Hypoxia reduced respiratory variability in control animals; however, A5 lesion prevented this effect in P7-8 rats. Our data suggest that noradrenergic neurons of the A5 region in neonate rats do not participate in the control of ventilation under baseline and hypercapnic conditions, but exert an inhibitory modulation on breathing variability under hypoxic challenge in early life (P7-8).


Assuntos
Neurônios Adrenérgicos/metabolismo , Tronco Encefálico/citologia , Hipercapnia/fisiopatologia , Hipóxia/fisiopatologia , Respiração , Neurônios Adrenérgicos/efeitos dos fármacos , Neurônios Adrenérgicos/fisiologia , Animais , Animais Recém-Nascidos , Tronco Encefálico/crescimento & desenvolvimento , Tronco Encefálico/fisiopatologia , Dopamina beta-Hidroxilase/farmacologia , Masculino , Ratos , Ratos Wistar , Saporinas/farmacologia
12.
Neuron ; 109(10): 1721-1738.e4, 2021 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-33823137

RESUMO

Basal ganglia play a central role in regulating behavior, but the organization of their outputs to other brain areas is incompletely understood. We investigate the largest output nucleus, the substantia nigra pars reticulata (SNr), and delineate the organization and physiology of its projection populations in mice. Using genetically targeted viral tracing and whole-brain anatomical analysis, we identify over 40 SNr targets that encompass a roughly 50-fold range of axonal densities. Retrograde tracing from the volumetrically largest targets indicates that the SNr contains segregated subpopulations that differentially project to functionally distinct brain stem regions. These subpopulations are electrophysiologically specialized and topographically organized and collateralize to common diencephalon targets, including the motor and intralaminar thalamus as well as the pedunculopontine nucleus and the midbrain reticular formation. These findings establish that SNr signaling is organized as dense, parallel outputs to specific brain stem targets concurrent with extensive collateral branches that encompass the majority of SNr axonal boutons.


Assuntos
Gânglios da Base/citologia , Tronco Encefálico/citologia , Diencéfalo/citologia , Neurônios/fisiologia , Animais , Gânglios da Base/fisiologia , Tronco Encefálico/fisiologia , Diencéfalo/fisiologia , Potenciais Evocados , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais/citologia , Vias Neurais/fisiologia
13.
Cell Rep ; 34(10): 108823, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-33691115

RESUMO

Whisker deafferentation in mice disrupts topographic connectivity from the brainstem to the thalamic ventral posteromedial nucleus (VPM), which represents whisker map, by recruiting "ectopic" axons carrying non-whisker information in VPM. However, mechanisms inducing this plasticity remain largely unknown. Here, we show the role of region-specific microglia in the brainstem principal trigeminal nucleus (Pr5), a whisker sensory-recipient region, in VPM whisker map plasticity. Systemic or local manipulation of microglial activity reveals that microglia in Pr5, but not in VPM, are necessary and sufficient for recruiting ectopic axons in VPM. Deafferentation causes membrane hyperexcitability of Pr5 neurons dependent on microglia. Inactivation of Pr5 neurons abolishes this somatotopic reorganization in VPM. Additionally, microglial depletion prevents deafferentation-induced ectopic mechanical hypersensitivity. Our results indicate that local microglia in the brainstem induce peripheral nerve injury-induced plasticity of map organization in the thalamus and suggest that microglia are potential therapeutic targets for peripheral nerve injury-induced mechanical hypersensitivity.


Assuntos
Microglia/citologia , Traumatismos dos Nervos Periféricos/patologia , Núcleos Ventrais do Tálamo/fisiologia , Aminopiridinas/farmacologia , Animais , Tronco Encefálico/citologia , Feminino , Hipersensibilidade/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/fisiologia , Traumatismos dos Nervos Periféricos/metabolismo , Pirróis/farmacologia , Tálamo/fisiologia , Núcleos Ventrais do Tálamo/efeitos dos fármacos , Vibrissas/fisiologia
14.
Nature ; 590(7846): 445-450, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33408409

RESUMO

The brainstem is a key centre in the control of body movements. Although the precise nature of brainstem cell types and circuits that are central to full-body locomotion are becoming known1-5, efforts to understand the neuronal underpinnings of skilled forelimb movements have focused predominantly on supra-brainstem centres and the spinal cord6-12. Here we define the logic of a functional map for skilled forelimb movements within the lateral rostral medulla (latRM) of the brainstem. Using in vivo electrophysiology in freely moving mice, we reveal a neuronal code with tuning of latRM populations to distinct forelimb actions. These include reaching and food handling, both of which are impaired by perturbation of excitatory latRM neurons. Through the combinatorial use of genetics and viral tracing, we demonstrate that excitatory latRM neurons segregate into distinct populations by axonal target, and act through the differential recruitment of intra-brainstem and spinal circuits. Investigating the behavioural potential of projection-stratified latRM populations, we find that the optogenetic stimulation of these populations can elicit diverse forelimb movements, with each behaviour stably expressed by individual mice. In summary, projection-stratified brainstem populations encode action phases and together serve as putative building blocks for regulating key features of complex forelimb movements, identifying substrates of the brainstem for skilled forelimb behaviours.


Assuntos
Tronco Encefálico/citologia , Tronco Encefálico/fisiologia , Membro Anterior/inervação , Membro Anterior/fisiologia , Destreza Motora/fisiologia , Vias Neurais , Animais , Feminino , Masculino , Bulbo/citologia , Bulbo/fisiologia , Camundongos , Movimento
15.
J Comp Neurol ; 529(7): 1541-1552, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-32949021

RESUMO

Cerebellar functions are modulated by cholinergic inputs, the density of which varies among cerebellar regions. Although the prepositus hypoglossi nucleus (PHN), a brainstem structure involved in controlling gaze holding, is known as one of the major sources of these cholinergic inputs, the proportions of cholinergic neurons in PHN projections to distinct cerebellar regions have not been quantitatively analyzed. In this study, we identified PHN neurons projecting to the cerebellum by applying retrograde labeling with dextran-conjugated Alexa 488 in choline acetyltransferase (ChAT)-tdTomato transgenic rats and compared the proportion of cholinergic PHN neurons in the PHN projections to four different regions of the cerebellum, namely the flocculus (FL), the uvula and nodulus (UN), lobules III-V in the vermis (VM), and the hemispheric paramedian lobule and crus 2 (PC). In the PHN, the percentage of cholinergic PHN neurons was lower in the projection to the FL than in the projection to the UN, VM or PC. Preposito-cerebellar neurons, except for preposito-FL neurons, included different proportions of cholinergic neurons at different rostrocaudal positions in the PHN. These results suggest that cholinergic PHN neurons project to not only the vestibulocerebellum but also the anterior vermis and posterior hemisphere and that the proportion of cholinergic neurons among projection neurons from the PHN differs depending on cerebellar target areas and the rostro-caudal regions of the PHN. This study provides insights regarding the involvement of cerebellar cholinergic networks in gaze holding.


Assuntos
Tronco Encefálico/citologia , Cerebelo/citologia , Neurônios Colinérgicos/citologia , Vias Neurais/citologia , Animais , Masculino , Microscopia Eletrônica de Varredura , Ratos , Ratos Transgênicos
16.
J Comp Neurol ; 529(4): 811-827, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-32656805

RESUMO

Polysialic acid (polySia), a homopolymer of α2,8-linked glycans, is a posttranslational modification on a few glycoproteins, most commonly in the brain, on the neural cell adhesion molecule. Most research in the adult central nervous system has focused on its expression in higher brain regions, where its distribution coincides with regions known to exhibit high levels of synaptic plasticity. In contrast, scant attention has been paid to the expression of polySia in the hindbrain. The main aims of the study were to examine the distribution of polySia immunoreactivity in the brainstem and thoracolumbar spinal cord, to compare the distribution of polySia revealed by two commercial antibodies commonly used for its investigation, and to compare labeling in the rat and mouse. We present a comprehensive atlas of polySia immunoreactivity: we report that polySia labeling is particularly dense in the dorsal tegmentum, medial vestibular nuclei and lateral parabrachial nucleus, and in brainstem regions associated with autonomic function, including the dorsal vagal complex, A5, rostral ventral medulla, A1, and midline raphe, as well as sympathetic preganglionic neurons in the spinal cord and central targets of primary sensory afferents (nucleus of the solitary tract, spinal trigeminal nucleus, and dorsal horn [DH]). Ultrastructural examination showed labeling was present predominantly on the plasma membrane/within the extracellular space/in or on astrocytes. Labeling throughout the brainstem and spinal cord were very similar for the two antibodies and was eliminated by the polySia-specific sialidase, Endo-NF. Similar patterns of distribution were found in rat and mouse brainstem with differences evident in DH.


Assuntos
Tronco Encefálico/química , Vértebras Lombares , Ácidos Siálicos/análise , Medula Espinal/química , Vértebras Torácicas , Animais , Tronco Encefálico/citologia , Tronco Encefálico/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos , Ratos Sprague-Dawley , Ácidos Siálicos/biossíntese , Medula Espinal/citologia , Medula Espinal/metabolismo
17.
J Comp Neurol ; 529(3): 635-654, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32602558

RESUMO

Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain. Sensory information may be modulated by projections from the brain to the spinal cord, but the neural substrates for top-down sensory control are incompletely understood. We identified a novel population of inhibitory neurons in the mouse brainstem, distinguished by their expression of prodynorphin, which we named LJA5. Here, we identify a similar group of Pdyn+ neurons in the human brainstem, and we define the efferent and afferent projection patterns of LJA5 neurons in mouse. Using specific genetic tools, we selectively traced the projections of the Pdyn-expressing LJA5 neurons through the brain and spinal cord. Terminal fields were densest in the lateral and ventrolateral periaqueductal gray (PAG), lateral parabrachial nucleus (LPB), caudal pressor area, and lamina I of the spinal trigeminal nucleus and all levels of the spinal cord. We then labeled cell types in the PAG, LPB, medulla, and spinal cord to better define the specific targets of LJA5 boutons. LJA5 neurons send the only known inhibitory descending projection specifically to lamina I of the spinal cord, which transmits afferent pain, temperature, and itch information up to the brain. Using retrograde tracing, we found LJA5 neurons receive inputs from sensory and stress areas such as somatosensory/insular cortex, preoptic area, paraventricular nucleus, dorsomedial nucleus and lateral hypothalamus, PAG, and LPB. This pattern of inputs and outputs suggest LJA5 neurons are uniquely positioned to be activated by sensation and stress, and in turn, inhibit pain and itch.


Assuntos
Tronco Encefálico/química , Tronco Encefálico/metabolismo , Encefalinas/análise , Encefalinas/metabolismo , Neurônios/química , Neurônios/metabolismo , Precursores de Proteínas/análise , Precursores de Proteínas/metabolismo , Animais , Tronco Encefálico/citologia , Humanos , Recém-Nascido , Camundongos , Camundongos Transgênicos
18.
J Comp Neurol ; 529(8): 2125-2137, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33247430

RESUMO

Sensory information is transmitted from peripheral nerves, through the spinal cord, and up to the brain ("bottom up" pathway). Some of this information may be modulated by "top-down" projections from the brain to the spinal cord. Discovering endogenous mechanisms for reducing pain and itch holds enormous potential for developing new treatments. However, neurons mediating the top-down inhibition of pain are not well understood, nor has any such pathway been identified for itch sensation. Here, we identify a novel population of GABAergic neurons in the ventral brainstem, distinguished by prodynorphin expression, which we named LJA5. LJA5 neurons provide the only known inhibitory projection specifically to lamina I of the spinal cord, which contains sensory neurons that transmit pain and itch information up to the brain. Chemogenetically activating LJA5 neurons in male mice reduces capsaicin-induced pain and histamine-induced itch. Identifying this new pathway opens new treatment opportunities for chronic, refractory pain, and pruritis.


Assuntos
Tronco Encefálico/citologia , Neurônios GABAérgicos/citologia , Dor , Prurido , Animais , Tronco Encefálico/fisiologia , Neurônios GABAérgicos/fisiologia , Masculino , Camundongos
19.
Nature ; 589(7842): 426-430, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33268898

RESUMO

Among numerous challenges encountered at the beginning of extrauterine life, the most celebrated is the first breath that initiates a life-sustaining motor activity1. The neural systems that regulate breathing are fragile early in development, and it is not clear how they adjust to support breathing at birth. Here we identify a neuropeptide system that becomes activated immediately after birth and supports breathing. Mice that lack PACAP selectively in neurons of the retrotrapezoid nucleus (RTN) displayed increased apnoeas and blunted CO2-stimulated breathing; re-expression of PACAP in RTN neurons corrected these breathing deficits. Deletion of the PACAP receptor PAC1 from the pre-Bötzinger complex-an RTN target region responsible for generating the respiratory rhythm-phenocopied the breathing deficits observed after RTN deletion of PACAP, and suppressed PACAP-evoked respiratory stimulation in the pre-Bötzinger complex. Notably, a postnatal burst of PACAP expression occurred in RTN neurons precisely at the time of birth, coinciding with exposure to the external environment. Neonatal mice with deletion of PACAP in RTN neurons displayed increased apnoeas that were further exacerbated by changes in ambient temperature. Our findings demonstrate that well-timed PACAP expression by RTN neurons provides an important supplementary respiratory drive immediately after birth and reveal key molecular components of a peptidergic neural circuit that supports breathing at a particularly vulnerable period in life.


Assuntos
Tronco Encefálico/fisiologia , Parto/fisiologia , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo , Respiração , Animais , Apneia/metabolismo , Tronco Encefálico/citologia , Dióxido de Carbono/metabolismo , Feminino , Masculino , Camundongos , Neurônios/metabolismo , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/deficiência , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/genética , Receptores de Polipeptídeo Hipofisário Ativador de Adenilato Ciclase/metabolismo
20.
EMBO J ; 40(5): e106010, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33346936

RESUMO

The cochlea encodes sound pressures varying over six orders of magnitude by collective operation of functionally diverse spiral ganglion neurons (SGNs). The mechanisms enabling this functional diversity remain elusive. Here, we asked whether the sound intensity information, contained in the receptor potential of the presynaptic inner hair cell (IHC), is fractionated via heterogeneous synapses. We studied the transfer function of individual IHC synapses by combining patch-clamp recordings with dual-color Rhod-FF and iGluSnFR imaging of presynaptic Ca2+ signals and glutamate release. Synapses differed in the voltage dependence of release: Those residing at the IHC' pillar side activated at more hyperpolarized potentials and typically showed tight control of release by few Ca2+ channels. We conclude that heterogeneity of voltage dependence and release site coupling of Ca2+ channels among the synapses varies synaptic transfer within individual IHCs and, thereby, likely contributes to the functional diversity of SGNs. The mechanism reported here might serve sensory cells and neurons more generally to diversify signaling even in close-by synapses.


Assuntos
Tronco Encefálico/fisiologia , Cálcio/metabolismo , Cóclea/fisiologia , Potenciais Evocados Auditivos do Tronco Encefálico , Células Ciliadas Auditivas Internas/fisiologia , Neurônios/fisiologia , Sinapses/fisiologia , Animais , Tronco Encefálico/citologia , Cóclea/citologia , Proteínas de Escherichia coli/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Células Ciliadas Auditivas Internas/citologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Proteínas Recombinantes de Fusão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...